2025考研
当前位置:首页 > 考研备考 > 数学指导

2023考研数学:隐函数求导的基本方法与步骤

1、隐函数求导的基本原则

对于隐函数求导一般不赞成通过记忆公式的方式来求需要计算的导数,一般建议借助于求导的四则运算法则与复合函数求导的运算法则,采取对等式两边同时关于同一变量的求导数的方式来求解。即用隐函数求导公式推导的方式求隐函数的导数。这样的方式不管对于具体的函数表达式还是抽象函数描述形式都适用。

2、多元复合函数求导数的基本步骤

(1)确定最终函数与最终变量。

(2)通过中间函数,或者通过引进中间函数符号,或通过序号标记中间函数复合过程函数,确定复合过程。

(3)关键:绘制变量关系图。

(4)链式法则:

分段用乘, 分叉用加, 单路全导, 叉路偏导。

从最终函数到最终变量有几条路径就有几项相加,每条路径上的分段数就是每项相乘的项数;依据这个法则,就可以直接非常准确地写出计算式。

(5)完成计算。

【注】

1.多元抽象复合函数的导数所具有的复合结构,与原来函数的复合结构一样。

2.如果要求导数的函数是复合函数,或与其他函数的四则运算表达式,一般先进行四则运算,对于其中的复合函数求导时,对于需要的计算结果再单独使用复合函数求导法则进行计算,将计算得到的结果代入原来四则运算的计算公式,然后得到最终需要的结果。

查看全文

【26考研辅导课程推荐】:26考研集训课程,VIP领学计划,26考研VIP全科定制套餐(公共课VIP+专业课1对1) , 这些课程中都会配有内部讲义以及辅导书和资料,同时会有教研教辅双师模式对大家进行教学以及督学,并配有24小时答疑和模拟测试等,可直接咨询在线客服老师领取大额优惠券。

上一篇:2023考研数学复习需要注意什么? 下一篇:2023考研数学:高数备考过程中是否需要掌握定理证明?

免责声明:本平台部分帖子来源于网络整理,不对事件的真实性负责,具体考研相关内容请以各院校的官网通知为准。如果本站文章侵犯到您的权利,请联系我们(400-108-7500)进行删帖处理。

精选课程

考研资讯

查看更多

                                         

考研备考

查看更多

考研指导

搜课程

热门搜索

搜索历史  

首页

课程

成长计划

研招

我的

每日10 份   抢先预约