2026考研
当前位置:首页 > 考研报考 > 考研复试

长沙理工大学实变函数23考研复试考什么?

2023考研初试成绩预计于2月20日前后公布,各位考生要提前做好准备。备战考研复试考生要先了解研招院校复试考什么内容,部分院校会公布考研复试内容,今天小编为大家整理的是长沙理工大 学实变函数23考研复试要求、考研复试题型、考研复试参考书目等信息,供参考。

科目代码:F1001 科目名称:实变函数

一、考试要求

主要考察考生是否掌握了实变函数的基本概念、基本理论和基本方法,包括集合的势与对等、Borel集类、Lebesgue测度、可测函数、可测函数的收敛、Lebesgue积分等的基本概念;集合序列的上 下限集、可测集经交并差运算、Lebesgue积分等的计算方法,Cantor 集的构造、可测函数“几乎处处收敛”与“测度收敛”以及“近一致收敛”之间的关系,Lebesgue积分与广义Riemann积分的异同 ,一般可测函数积分的性质。Riemann 可积性与Lebesgue可积性之间的关系,Lebesgue积分的极限定理等;以及是否具备运用基本理论和基本方法,分析解决问题的能力。

二、考试内容

1、集合的基本运算;集合序列的上、下限集。集合的势的定义,势的性质,势的比较。常见集合的势及其基本性质;

2、n维空间中集合的内点、边界点、聚点、开集、闭集等概念,明确开集的构造.理解完备集的概念,特别要掌握Cantor 集;

3、外测度概念,外测度与体积的关系,可测集的定义及其性质,包括可测集经交、并、差运算后的可测性,可数个可测集的交集或并集的可测性、可数可加性以及可测集序列的极限之可测性。 Borel集类;Lebesgue可测集的结构;

4、可测函数的概念,可测函数的特征性质,简单函数的有关性质。掌握“几乎处处收敛”与“测度收敛”以及“近一致收敛”的概念和它们之间的关系;

5、一般可测函数积分的定义,Lebesgue积分与广义Riemann积分的异同,一般可测函数积分的性质。Riemann 可积性与Lebesgue可积性之间的关系。Lebesgue积分的极限定理,包括Levi定理、 Fatou引理、 Lebesue控制收敛定理及其应用,Riemann可积的充要条件。掌握L 积分的概念,理解L 积分和R 积分的关系.掌握L 积分的性质,对有关L 积分的三个极限定理及其应用。

三、题型

试卷满分为100分,其中:判断题占30%,计算分析题占20%,证明题占50%。

四、参考教材

1.《实变函数与泛函分析基础》(第三版).程其襄等.高等教育出版社,2010。

2.《实变函数与泛函分析概要》(第三版).郑维行、王声望主编.高等教育出版社,2005。

通过了考研初试,各位考生一定要认真准备考研复试,有需要考研复试指导的考生,可以在右侧窗口留言,会有老师一对一为大家做详细介绍,助力各位考生顺利进入理想院校。

查看全文

【26考研辅导课程推荐】:26考研集训课程,VIP领学计划,26考研VIP全科定制套餐(公共课VIP+专业课1对1) , 这些课程中都会配有内部讲义以及辅导书和资料,同时会有教研教辅双师模式对大家进行教学以及督学,并配有24小时答疑和模拟测试等,可直接咨询在线客服老师领取大额优惠券。

上一篇:长沙理工大学信号与系统23考研复试考什么? 下一篇:长沙理工大学热力设备及系统23考研复试考什么?

免责声明:本平台部分帖子来源于网络整理,不对事件的真实性负责,具体考研相关内容请以各院校的官网通知为准。如果本站文章侵犯到您的权利,请联系我们(400-108-7500)进行删帖处理。

精选课程

考研资讯

查看更多

                                         

考研备考

查看更多

考研指导

搜课程

热门搜索

搜索历史  

首页

课程

成长计划

研招

我的

每日10 份   抢先预约