2026考研
当前位置:首页 > 考研备考 > 数学指导

考研数学必知的问题(五)

考研数学有很多的知识点,考生都应掌握并知道如何运用。小编整理了考研数学必知的问题(五),来看看吧。

13.概率中的矩估计和极大似然估计常考大题,这部分不大理解,但按照步骤也能做对,要不要花精力理解呢?

这就像练武,内功没有长进,也没有融会贯通,但是记住了招式,这样行吗?也未必不行。因为招式也是武功的一部分,遇见水平较低的对手,按照招式走也常常有效。但这是多数习武者追求的吗?

答案显而易见。对于备考而言,“理解”、“融会贯通”能提升考生的内功,而排除偶然因素后,内功深厚是考高分的必要条件。

14.线性代数向量那部分的定理比较抽象,一定要会证明吗?

向量部分有两大部分内容需要重点把握:一部分是向量的两个核心概念“线性相关”和“线性表出”与线性方程组的关系;另一部分是向量自身有一些定理,需要把握。

前一部分对处理数值型向量组的“线性相关”和“线性表出”问题很有效——处理“线性相关”问题转化为齐次线性方程组有非零解的问题;处理“线性表出”问题转化为非齐次线性方程组的解的存在性问题。

后一部分对考生的逻辑思维能力要求较高。定理内容要熟悉,大部分的定理要会证明。如“n(n>=2)个向量构成的向量组线性相关的充要条件是存在一个向量能由其余向量线性表出”,该定理有助于理解“线性相关”这个概念的含义,另外该定理的证明过程中包含着证明一个向量由一个向量组线性表出的思路:找一个包含这个向量和向量组的等式,说明该向量的系数不为0即可。

15.线代既灵活又抽象,怎么把握呢?

问过不少考生这个问题:线性代数的知识结构是树形结构还是网状结构?不少同学回答网状结构。考生首先应该把考纲规定的每个考点掌握好,接下来完成“归纳题型,总结方法”的任务(可以自己把参考资料总结的方法消化吸收,也可以把老师讲的方法消化吸收),接下来就是形成体系和强化重难点了。

如何形成体系呢?用核心的概念把相关的知识串起来是个不错的方法。比如n阶矩阵A可逆有多少等价条件?从行列式的角度是A的行列式不等于0,从向量的角度是A的列向量组或行向量组线性无关,从线性方程组的角度是Ax=0仅有零解或Ax=b有唯一解,从秩的角度是r(A)=n,从特征值的角度是A的特征值不含0,从二次型的角度是A的转置乘A正定。

还有,要有寻根究底的精神。比如,我们讨论下秩这个让考生百感交集的概念。首先要搞清楚秩是什么?线性代数中有两个秩:一个矩阵的秩,一个向量组的秩。矩阵的秩是矩阵非零子式的最高阶数。一个矩阵的秩为k意味着什么?要会“翻译”。“直接翻译”的结论是矩阵非零子式的最高阶数为k。只会“直接翻译”还不足以应对考题,还得会“间接翻译”:该矩阵存在k阶非零子式,并且该矩阵不存在k+1阶非零子式。

再进一步思考:前半句话用秩的语言怎么描述?应为r(A)>=k;后半句话用秩的语言怎么描述?应为r(A)<=k。再思考:该矩阵不存在k+1阶非零子式包含几种情况?应有两种情况:1)矩阵存在k+1阶子式,但k+1阶子式全为0;2)矩阵不存在k+1阶子式(如矩阵是k阶方阵)。这样关于矩阵的秩的概念才理解到位了,但还需多做题才能达到熟练。

类似地,我们可以对“向量组的秩”这个概念做层层剖析。首先,向量组的秩是向量组的极大线性无关组所含向量的个数。什么是极大线性无关组?顾名思义即个数最多的线性无关的子向量组。但是严格的数学定义必不可少。

这个地方提到一个问题:有同学对于比较抽象的概念比较头疼,试图抛开严格的数学表述,而通过举例子等方式理解,这样可以吗?不行。举例子确实有助于理解,但代替不了严格的数学表述。其实,定义理解好了,方法就是自然而然的了。考生可以思考相关问题:如极大无关组是否唯一?如果不唯一,那它们是什么关系?

还可以继续思考矩阵的秩和向量组的秩的关系。任给一个矩阵A,矩阵可以按列分块,也可以按行分块,这样我们可以得到三个秩——矩阵的秩,矩阵的列向量组的秩和矩阵的行向量组的秩。这三个秩是什么关系?结论是相等。这个结论不需要证明,会用即可。

以上就是考研数学必知的问题(五)的内容。考生备考中要经常总结,积累错误经验。要了解更多考研的内容,可以在右侧窗口留言,会有启航教育的老师一对一为大家做详细的介绍。

查看全文

【26考研辅导课程推荐】:26考研集训课程,VIP领学计划,26考研VIP全科定制套餐(公共课VIP+专业课1对1) , 这些课程中都会配有内部讲义以及辅导书和资料,同时会有教研教辅双师模式对大家进行教学以及督学,并配有24小时答疑和模拟测试等,可直接咨询在线客服老师领取大额优惠券。

上一篇:考研数学必知的问题(四) 下一篇:考研数学必知的问题(六)

免责声明:本平台部分帖子来源于网络整理,不对事件的真实性负责,具体考研相关内容请以各院校的官网通知为准。如果本站文章侵犯到您的权利,请联系我们(400-108-7500)进行删帖处理。

精选课程

考研资讯

查看更多

                                         

考研备考

查看更多

考研指导

搜课程

热门搜索

搜索历史  

首页

课程

成长计划

研招

我的

每日10 份   抢先预约