2026考研
当前位置:首页 > 考研备考 > 数学指导

考研数学:高数易混知识点详解

考研数学有很多的知识点,考生都应掌握并知道如何运用。小编整理了考研数学高数易混知识点,供大家学习。

1、非齐次线性方程组解的结构及通解;

2、齐次线性方程组的基础解系、通解及解空间的概念,齐次线性方程组的基础解系和通解的求法;

3、齐次线性方程组有非零解的充分必要条件,非齐次线性方程组有解的充分必要条件;

4、矩阵初等变换的概念,初等矩阵的性质,矩阵等价的概念,矩阵的秩的概念,用初等变换求矩阵的秩和逆矩阵;

5、向量、向量的线性组合与线性表示的概念;

6、用初等行变换求解线性方程组的方法;

7、基变换和坐标变换公式,过渡矩阵。(数一)

8、向量空间、子空间、基底、维数、坐标等概念;(数一)

9、向量组线性相关、线性无关的概念,向量组线性相关、线性无关的有关性质及判别法;

10、向量组的极大线性无关组和向量组的秩的概念和求解;

11、向量组等价的概念,矩阵的秩与其行(列)向量组的秩之间的关系;

矩阵的特征值特征向量与二次型相当于是求解线性方程组的应用,出题比较灵活,有些题目技巧性较强,复习起来也是比较有意思的一章。在考试中也是比较容易出大题的内容。

其中我们应当掌握:

1、规范正交基、正交矩阵的概念以及它们的性质;

2、内积的概念,线性无关向量组正交规范化的施密特(Schmidt)方法;

3、矩阵的特征值和特征向量的概念及性质,求矩阵的特征值和特征向量;

4、实对称矩阵的特征值和特征向量的性质;

5、相似矩阵的概念、性质,矩阵可相似对角化的充分必要条件,将矩阵化为相似对角矩阵的方法;

6、二次型及其矩阵表示,二次型秩的概念,合同变换与合同矩阵的概念,二次型的标准形、规范形的概念以及惯性定理;

7、正定二次型、正定矩阵的概念和判别法。

8、正交变换化二次型为标准形,配方法化二次型为标准形;

以上就是考研数学高数易混知识点。考生备考中要经常总结,积累错误经验。要了解更多考研的内容,可以在右侧窗口留言,会有启航教育的老师一对一为大家做详细的介绍。

查看全文

【26考研辅导课程推荐】:26考研集训课程,VIP领学计划,26考研VIP全科定制套餐(公共课VIP+专业课1对1) , 这些课程中都会配有内部讲义以及辅导书和资料,同时会有教研教辅双师模式对大家进行教学以及督学,并配有24小时答疑和模拟测试等,可直接咨询在线客服老师领取大额优惠券。

上一篇:考研数学:概率论各章节复习口诀集锦 下一篇:考研数学:概率与统计题型常考的考点(一)

免责声明:本平台部分帖子来源于网络整理,不对事件的真实性负责,具体考研相关内容请以各院校的官网通知为准。如果本站文章侵犯到您的权利,请联系我们(400-108-7500)进行删帖处理。

精选课程

考研资讯

查看更多

                                         

考研备考

查看更多

考研指导

搜课程

热门搜索

搜索历史  

首页

课程

成长计划

研招

我的

每日10 份   抢先预约